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The MiniBooNE experiment and LSND

MiniBooNE was designed to confirm or refute the LSND oscillations signal

The LSND oscillations signal
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MiniBooNE

LSND + Karmen2
combined analysis
allowed region

BooNE: a 2™ generation experiment that will come to life if MiniBooNE
confirms LSND. MiniBooNE design allows to build on to BooNE.



Mini-BooNE Collaboration
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MiniBooNE Neutrino Beam

Variable decay
pipe length
(2 absorbers @
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The MiniBooNE Detector
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Particle Identification

Separation of v, from v, events

Exiting v events fire the veto
Stopping v, events have a Michel electron after a few psec

Also, scintillation light with longer time constant [ enhanced for slow pions and protons
Cerenkov rings from outgoing particles

* Shows up as a ring of hits in the phototubes mounted inside the MiniBooNE sphere
e Pattern of phototube hits indicates the particle type

nuds: U
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Intrinsic v, in the beam

Small intrinsic v, rate [ Event Ratiov/v =6 x10?

T - “311 v, from p—decay
ety TV — Directly tied to the observed half-
¢ H million v, Interactions

Kaon rates measured in low energy proton
production experiments
— HARP experiment (CERN)
Kt 1P eV, —- — E910 (Brookhaven)

— MiniBooNE “High Energy Box™ data

o “Little Muon Counter’ measures rate of kaons

Monte Carlo : Vu;l“" In-situ
Ve ux

Flux /0.1 GeV

0

LMC

//4

Spectrometet
K “'--F-.._

————

Fraction of v

Decay Channel
0 0.5 1 15 2 2.5 3

E, (GeV)



Estimates for thev, —v_Appearance Search

e Look for appearance of v, events above

background expectation

- Use data measurements both
internal and external to constrain
background rates

» Fitto E, distribution used to separate
background from signal.
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MiniBooNE Oscillation Sensitivity

* CQOscillation sensitivity and measurement capability
- Data sample corresponding to 1x102! pot
- Systematic errors on the backgrounds average ~5%
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If MiniBooNE sees a signal...

* If MiniBooNE sees no indications of oscillations with Vv,

O Need to run with v since LSND signal was v - v,
(Morgan O. Wascko, PANIC'05)

* |f MiniBooNE sees an oscillation signal
[0 There are 3 Am’ scales involved in oscillations

How can there be three distinct Am?2's?

* Additional “sterile” neutrinos involved in oscillations
* One of the experimental measurements is not neutrino oscillations
- [e.g. Neutrino decay (Palomares—Ruiz et.al., hep-ph/0505216) ]
* CPviolation and sterile v’s (allows different mixing for v’s and anti-
V’S)
* Even stranger things (CPT violation,...)



MiniBooNE possibilities -- oscillations
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Experimental Program with Sterile Neutrinos

If sterile neutrinos is the answer, then many mixing angles, CP phases, and Am?

could be included

2
Am ..

* Measure number of extra masses Am 2

14 7/

* Measure mixings

Map out mixings associated
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 Oscillations to sterile neutrinos could affect
long-baseline measurements and strategy

J N\

Map out mixings associated
with VP — V.[
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If MiniBooNE sees v v then: BooNE: Two Detector Exp.

- Far detector at 1.025 km for high Am? signal or 2.025km for low Am? signal.

- Cost of one additional detector ranges from 5 to10 Million Dollars (conceivable to think
about more than one)

| * Precision measurement of
BooNE—Tfor (1.0E21 po oscillation parameters

(10 and 2o Contours) ~ sin226 and Am?
- Mapoutthenxn
mixing matrix
* Determine how many high
mass Am? ‘s
- 3+1,3+42,3+3 ...

e Show the L/E oscillation
dependence

- Oscillations or v decay
or 7?7?

Two location BooNE experiment:

1 near detector at current MiniBooNE location and 1 far detector at 1025m, (2025m) if
observe a signal with oscillation parameters: [sin?28, Am?] = [ 0.4 eV?, 0.017] Low Am?
[sin®26, Am?] = [1.0 eV?, 0.004 ] High Am?



BooNE: 1near+ 4far Detector Exp., and other possibilities

Much higher precision can be achieved Also explore disappearance in high Am?
by adding more detectors (e.g.4- det) to probe oscillations into sterile v's.
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A near detector at ~100m (Finesse
proposal) for disappearance and
background determination could be
useful (See R.Tayloe's talk)

Two location BooNE experiment:

1 near detector at current MiniBooNE
location and 4 far detectors at second
location. Same correspondence to
signals as in previous slide.




If MiniBooNE sees v, v, (or not) then:
run MiniBooNE with anti-neutrinos for v - v,

* Arev, and_vu the same?

- Mixing angles, Am? values
e Explore CP (or CPT) violation by comparing

Vv, and _vu results

* Running with anti-neutrinos takes longer to
obtain similar sensitivity
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If we see a signal in anti-neutrinos:
run BooNE with anti-neutrinos for v, - v,



A possible time scale for BooNE (2 detector system)

- 2006 appearance results and anti-v running

- 3 years after signal is observed start detector
construction.

- ~2 years later begin data taking with 2-detector
system

Things to note:
* Detector identical in design to MiniBooNE
(systematics motivated)
* Would use:
- New 0il
- New electronics (Los Alamos developing design)
* Construction timescales and costs well understood
- Estimated 5-7 MD for one additional Detector
* WBS already in place

Ready to go in the event of a positive MiniBooNE result!



Conclusions

— A positive MiniBooNE result will bring us to a new and
exciting era in neutrino physics.

- Additional detector(s) can boost the measurement
capabilities of the booster neutrino beam at Fermilab
and make it unique in its kind.

— Precision measurements will allow us to test CP
conservation in neutrino sector with the existing
beamline and its capability of change in polarity.

- The direction of the field will be determined by what
we discover in these experiments



Backup Slides



V,—V, Appearance at High Am’

Appearance of V_ helps to sort out the
mixings through the sterile components

Need moderately high neutrino energy to

get above the 3.5 GeV T threshold
(~6-10 GeV)

Example: NuMI Med energy beam 8 GeV
with detector at L=2km (116m deep)
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Explain LSND with Sterile Neutrinos

A 3+1 models 3+2 modelsm
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CPT Violation in the neutrino sector (m,, # m,)

Accomadates all three signals with three standard model neutrinos

inspired by Murayama,

Neutrinos: Antineutrinos; Developed by Barenboim.
Lykken and Borissov
] ]
atmospheric
O N

. . LSND

atmospheric B
] L] KamlLand

solar — O N

hep-ph/0210411
Barenboim, Lykken

*A new non-local field theory
* not Lorentz violating
* introducing a whole new "Dirac Eq."

*Hit all present data, including Super K and KamlLand

Check by comparing neutrino and anti-neutrino modes



